高解像度リモートセンシングデータを用いた森林域の冠雪害検出

慶大院 〇田口仁·臼田裕一郎·古谷知之·福井弘道 岐阜県森林科学研 古川邦明

1. はじめに

森林域において被害が発生した場合,復旧作業等 や保険による補償が行われる。しかし,従来の被害 情報の把握は現地調査に頼るため,広範囲で分散的 な被害状態の検出は困難であった。一方,近年は高 解像度衛星画像や LiDAR データに代表される高解 像度のリモートセンシングデータが登場し,従来と 比較して効率的で高精度の被害情報の収集が可能と なりつつある。

Logit モデルをリモートセンシングに応用した事 例としては, Seto and Kaufmann (2005)^[1]が Landsat TM に適用しているが,本研究では2時期 の高解像度衛星画像とLiDAR データの2種類のデー タを組み合わせ, 冠雪害による倒木被害箇所を検出 する手法について検討した。

2. 分析の方法と手順

本研究では、Logit モデルを用いてメッシュを「被 害」または「無被害」の 2 つのカテゴリーに選択す る方法を採用する ^[2]。このモデルの利点は、1)選択 確率で表現されることから理解しやすく、2)主題図 のような他の空間データをモデルに取り込める可能 性があること、などが挙げられる。この Logit モデ ルのために、高解像度衛星画像 IKONOS と LiDAR データから得られる情報は説明変数となる。メッシ ュ n における被説明変数は倒木被害箇所を $y_{in} = 1$ 、 無被害箇所を $y_{in} = 0$ とし、選択確率を $P(y_{in})$ とする。

Logit モデルでは、その地点で観測されたデータを 基に効用(U)が最大となるように選択すると仮定す る。しかし、観測された情報が誤差等の要因から不 完全なため、利用可能な選択肢の範囲やその特性の 情報を十分に得られない場合があり、効用はその場 所の属性によって異なる。そのため、効用関数を確 率変動すると仮定し、確率変数で表現する。冠雪害 が発生した場合の効用関数 U_1 は式(1)のように表さ れる。

$$U_1 = \beta_1 x_{1in} + \beta_2 x_{2in} + \dots + \beta_k x_{kin} + \varepsilon_{in} \quad (1)$$

 $x_{1in} \cdots x_{Kin}$ は観測可能な説明変数で, リモートセン シングデータの観測値や変換値である。 $\beta_1 \cdots \beta_K$ は パラメータである。この式(1)をリモートセンシング データで観測可能な確定項 V_{in} と, 観測不可能な要因 により確率的に変動する確率項 ε_{in} に分割する。この 確率項 ε_{in} は, 観測不可能な要因の同時分布であるこ とから, 一般的には正規分布である。しかし, パラ メータの推定が複雑であるため, 確率項の正規分布 と類似したガンベル分布を仮定する。次に, メッシ ュ nにおける冠雪害による被害の発生を選択する確 率 $P(y_{in} = 1)$ は式(2)で表され, $P(y_{in} = 1)$ >0.5 で被害 が発生したと判断する。

$$P(y_{in} = 1) = \frac{1}{1 + e^{-U_1}} \quad (2)$$

パラメータβは、最尤推定法を用いて、尤度関数 を最大にすることで得られる。また、推定したモデ ルの当てはまりを評価するため、赤池情報量基準 (AIC)と擬似決定係数(Pseudo R²)を求める。

本研究での分析の流れを Fig.1 に示す。モデルに 必要なデータは次章で説明する。

Fig.1 分析のフロー

3. モデルに使用するデータ

本研究では、2002年1月に冠雪害が広域に発生し た岐阜県郡上市美並町を対象とした。使用する IKONOS データは 2001 年 9 月と 2003 年 5 月の 2 時期で,冠雪害の被災前後で撮影されたものである。 LiDAR データは 2004 年の春季にかけて取得された ものである。教師データはモデルのパラメータ推定 のために使用する。

3.1. IKONOS データ

Fig.2に2時期のIKONOSデータ(マルチスペクト ル画像:解像度4m)を示し, Fig.3に2003年5月の IKONOS データにおける,冠雪害の発生箇所,針葉 樹,広葉樹の代表的な土地被覆の画素値のプロファ イルを示した。冠雪害が発生した画素は針葉樹や広 葉樹の画素値と比べ,バンド3(赤)の画素値が高く, バンド4(近赤外)の画素値が低い。これは植生被覆か ら、樹木の側面や土壌となるためである。しかし、 バンド 1(青)やバンド 2(緑)ではクラス間の画素値の 変化がみられなかった。従って、バンド3とバンド 4をLogitモデルの説明変数に使用することにした。

Fig.2 IKONOS データ(RGB = 432) (左:2001年9月,右:2003年5月)

Band 1 Band 2 Band 3 Band 4

Fig.3 代表的土地被覆における画素値のプロファイル (2003 年 5 月の IKONOS データを使用)

3.2. LiDAR データ

冠雪害により倒木した箇所は, Digital Surface Model(DSM)では、ギャップとして表現される。Fig.4 に DSM とギャップの箇所の断面図を示した。

Fig.4 冠雪害発生箇所の DSM(左)と断面図(右) ギャップとなる箇所を LiDAR データから作成さ れる DSM から抽出し、Logit モデルの説明変数とす る。DSM のメッシュサイズは 1m とし, そのメッシ ュに入るポイントパルスの最大値を DSM の値とす る。ポイントパルスの入らなかったメッシュは Median フィルターを施すことで値を格納させた。

次に、ギャップの抽出処理を行う。ギャップを抽 出した既往事例としては, Koukoulas and Blackburn(2004)^[3]が、LiDAR データから作成した 樹高モデルの傾斜角を求め, 閾値を超える箇所を境 界としてギャップ抽出を行った。本研究では、ギャ ップは領域であることに着目し、領域分割の手法を 適用してギャップを抽出する手法を検討した。

領域分割は, Baat and Schape(2000)^[4]が提案して いる領域成長法を適用した。領域成長法では、互い に接する領域同士の濃淡レベルを計算し、その差が あらかじめ設定した閾値以下であれば領域同士を併 合するという動作を繰り返し,領域を拡大していく。 この閾値は Scale Parameter と呼ばれている。領域 内における高さの幅の平均値が 10m を下回る閾値 6 をパラメータとした。次に、各領域の平均の高さを 求め、あらかじめ作成した詳細な DEM データとの 高さの差を求める。倒木することの高さを考慮し, 3mより低い領域をギャップとして抽出した。結果の 一部を Fig.5 に示す。ギャップとなった箇所を1と した2値化データを作成し、Logitモデルに組み込む ことにした。

Fig.5 ギャップ抽出結果(左:DSM,右:抽出結果)

3.3. 教師データ

Logit モデルのパラメータを推定するために, 教師 データを作成した。教師データは現地調査の結果等 をもとに, IKONOS マルチスペクトル画像の解像度 である 4m のメッシュとして整備した。教師データ 全体のメッシュ数は, 75×83 の 6225 メッシュで, その中に冠雪害の発生箇所は 218 メッシュ存在した。

4. 結果

4.1. モデル推定結果

パラメータ推定結果と検証データによる的中率を Table.1 に示す。今回, モデル推定に使用するデータ の有無が与える影響を比較するため、いくつかのモ デルを想定した。モデル0は、全てのデータを使用 したモデルである。しかし、2001年のバンド3が 10%水準でも有意ではなかった。そのため、モデル1 に2001年バンド3を含めないモデルを設けた。モデ ル2はギャップ抽出結果を用いず, IKONOS データ のみで検出する場合のモデルとした。また,モデル3 は被災前のデータが存在しない場合で、被災後であ る 2003 年バンド 3,4 とギャップ抽出結果によるモ デルとした。他にも、被災前の IKONOS データとギ ャップ抽出結果によるモデルと, ギャップ抽出結果 のみのモデルを想定してパラメータを推定した。し かし、共に選択確率が50%を超えるメッシュが存在 せず、モデルとしては不適格であった。

4.2. 考察

推定パラメータは、4 つのモデルが共に 2003 年バ ンド3のパラメータは正の値、バンド4は負の値と なり、常識的な結果となった。また、ギャップ抽出 のパラメータは正の値で、常識的な結果を得た。し かし、2001 年のバンド3、4 のパラメータは常識的 ではない場合があった。

モデル間の比較では、IKONOS データのみで推定

Table.1 パラメータ推定結果

	モデル 0	モデル 1	モデル 2	モデル3
定数項	-37.2540	-35.9983	-23.9590	-35.2414
	(-11.13 ***)	(-11.40 ***)	(-11.42 ***)	(-11.34 ***)
2001 年	0.01461		-0.01874	
バンド 3	(-1.2)		(-1.856 •)	
2001 年	-0.00362	-0.00212	-0.00283	
バンド 4	(-2.324 *)	(-2.292*)	(-2.073 *)	
2003 年	0.13924	0.13880	0.13739	0.13413
バンド 3	(11.66 ***)	(11.64 ***)	(16.36 ***)	(11.54 ***)
2003 年	-0.01355	-0.01344	-0.02172	-0.01423
バンド 4	(-7.847 ***)	(-7.79 ***)	(-14.97 ***)	(-8.40 ***)
LiDAR	6.17601	6.09029		6.16221
(ギャップ)	(-10.74 ***)	(10.77 ***)		(10.94 ***)
AIC	587.65	587.02	1046.5	590.32
Pseudo R ²	0.6953	0.6946	0.4515	0.6918
冠雪害に対する <u>被害選択</u> 被害実測	58.71%	58.25%	32.57%	58.71%
冠雪害に対する <u>被害誤選択</u> 被害実測	41.28%	41.74%	67.43%	41.28%
全体的中率	98.07%	98.05%	97.22%	98.02%

※ ()はz値

※ ***0.1%水準で有意, **1%水準で有意, *5%水準で有 意, ·10%水準で有意

したモデル2は、他のモデルと比較して Pseudo \mathbb{R}^2 が最も低かった。また、的中率は低く、実測被害中 の選択結果の割合は 32%程度で他のモデルの割合と 比較しても低い結果となった。一方、モデル 0, 1, 3 は Pseudo \mathbb{R}^2 がほぼ同じ値となった。的中率や実 測被害中の選択結果の割合は、58%でほぼ同じ精度 が得られた。

被災前の 2001 年のデータを含めたモデル 0,1 と, 被災前のデータを含めないモデル 3 は,的中率や Pseudo R² に違いがみられなかった。この原因とし ては,教師データの領域において 2003 年のバンド 3 の画素値が高く,バンド 4 の画素値が低い箇所は, ギャップとなっている場合がほとんどであるため,1 時期で十分に検出可能であったことが考えられる。 そのため,2001 年のバンド 3,4 のパラメータは常 識的ではなかった可能性が高い。 以上の考察から,冠雪害の検出精度を向上させる ためには被災後の IKONOS データと,LiDAR デー タによるギャップ抽出結果が不可欠だといえる。ま た,被災前の IKONOS データを用いることで,検出 精度の高いモデルを推定できる可能性はある。その ためにも,教師データの設定は慎重に行う必要があ り,今後の課題としたい。

4.3. 広域への展開

前節で推定したモデルを広域に展開させた。モデ ル1のケースで2km四方の範囲を対象とし,冠雪害 による倒木域の検出を行った。冠雪害被害マップを Fig.6に示し,Fig.7に拡大した図も示した。

Fig.6 冠雪害被害マップ(白い画素)

Fig.7 検出結果の例 (左上:1999 年空中写真,右上: 2004 年空中写真, 左下:検出結果)

2004 年秋季にかけて現地調査を行い, GPS で被 害発生箇所の地理座標を分析対象地域内で 42 点取 得した。GPS での位置取得地点について, オルソ空 中写真で位置を補正し, 検証用データを新たに作成 した。この検証用データとモデル1による冠雪害検 出結果を重ね合わせた結果,71.4%(42 地点中 30 点) が冠雪害による倒木域として的中した。

5. まとめと今後の課題

本研究では、冠雪害発生前後 2 時期の IKONOS データと LiDAR データから抽出したギャップ抽出 結果を用いて、離散型選択モデルである Logit モデ ルを適用し、冠雪害で倒木した箇所を検出する手法 を検討した。その結果、2 時期の IKONOS 画像のみ でなく、LiDAR データから得られたギャップ情報を 併用すると、検出精度が向上する可能性が示された。 また、今後の課題として、以下の4 点が挙げられる。

- Logit モデルに適用する前のリモートセンシン グデータの処理手法の有効性の検証や、新たな 処理手法の検討を行う必要がある。
- ② 隣接するメッシュの関係性や、地形要因を考慮したモデルの推定手法について検討する。
- ③ 教師データを改善させ、パラメータ推定の精度 を向上させる。
- ④ 既存の検出方法との比較から、本研究で検討した手法の有効性について明らかにする。

本研究は,慶應義塾大学 SFC 研究所ジオインフォ マティクスラボと岐阜県森林科学研究所との共同研 究「高解像度リモートセンシングと森林 GIS による 森林管理システムの開発」の一環として行われたも のである。

参考文献

[1] K.C. Seto and R.K. Kaufmann (2005): Using logit model to classify land cover and land-cover change from Landsat Thematic Mapper, International Journal of Remote Sensing, Vol.26, No.3, pp.563-577.

[2] 土木学会 土木計画学研究委員会編(1997):非集計 行動モデルの理論と実際,社団法人土木学会,240p.

[3] S. Koukoulas and G.A. Blackburn (2004): Quantifying the spatial properties of forest canopy gaps using LiDAR imagery and GIS, International Journal of Remote Sensing, Vol.25, No.15, pp.3049-3071.

[4] M. Baatz & A. Schape (2000): Multiresolution
Segmentation: an optimization approach for high quality multi-scale image segmentation. In: Strobl, J. & Blaschke, T. (Eds.): Angewandte Geographische Informations
verarbeitung XII, Wichmann-Verlag, Heidelberg, pp. 12 – 23.