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1. INTRODUCTION1. INTRODUCTION
There is increasing demand for precise estimates of forest biomass, potential productivity and forest growth.
Recent studies have shown the potential of remote sensing data at optical wavelengths, such as leaf area 
index (LAI) and land cover, to provide spatially referenced input data for process-based ecosystem models.
LiDAR data can estimate useful information for stand forest development, such as tree height, stem 
populations and biomass. 
Process-based forest growth model (3-PG) is developed by Landsberg and Waring (1997). Using LiDAR 
data, the 3-PG has great potential to estimate biomass and productivity precisely and spatially.

The objective of this study is coupling airborne LiDAR data with the process-based forest growth model. Cryptomeria japonica D. Don
(Japanese cedar; Sugi)
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WITH FOREST GROWTH MODEL IN CONIFER PLANTATION

• The 3-PG model is tree growth model based on Physiological Principles that Predict 
Growth (Landsberg and Waring, 1997).

• The model uses light use efficiency (LUE). The theoretical maximum canopy quantum 
efficiency is reduced by physiological function and site environment.
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ABSTRACTABSTRACT Recent studies have shown the potential of remote sensing data at optical wavelengths to provide spatially referenced input data for process-based ecosystem models. Airborne 
Light Detection and Ranging (LiDAR) data have potential to provide stand development information of forest and spatially referenced input data for the models. The aim of this study is  
coupling airborne LiDAR data with a process-based forest growth model. In this study, 3-PG (Physiological Principles to Predict Growth) which is one of the simplest forest growth models is 
used to estimate forest growth and productivity. The model requires few parameter values and only readily available input data. Species specific parameters for the model are specified by field
measured data and literatures. Stand forest parameters such as tree height, population and biomass are estimated by LiDAR data and a tree size distribution function. The fit between simulated 
and the stand parameters derived by LiDAR data is improved by tuning parameter values. The coupling method is applied for a Japanese cedar (Sugi) plantation. The estimations are 
corresponded with field measured data and yield table. It is concluded that coupling LiDAR data with the process-based forest growth model can estimate the forest growth and productivity. 
This coupling method focused in this study can play an important role in improving the estimation accuracy above-ground biomass and forest productivity.
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• In this study, LiDAR data is coupled with process-based forest growth model “3-PG”
for a Japanese cedar plantation.

• The tuning scheme works well. Compared to yield table values, the model estimates 
time series stem biomass appropriately. 

• Tree height data derived by remote sensing would play an important role in improving 
estimating time-series forest biomass and productivity using process-based forest 
growth model.

• Scaling up to extensive area. Estimating site environmental factors (solar radiation and 
soil water) using DEM for the scaling up.
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• Tree crown detection method developed by Taguchi et al, (in review) is used.
• Tree height is converted to stem biomass, using DBH-tree height relation and allometric 

equation of DBH and stem biomass.
• In canopy-closed plot, stem biomass and population are underestimated, because it is 

difficult to detect suppressed trees. 
• Tree size distribution function (MNY method) developed by Hozumi (1971) is applied in 

canopy closed plot.

Table. 2 The comparison between (1) field measured with (2) LiDAR data and (3) 
LiDAR data and the MNY method.

* Plot 6 is not applied by the MNY method, because it was not canopy-closed plot.

Plot Plant
Year

Mean H Population Stem
Biomass Mean H Population Stem

Biomass Population Stem
Biomass

(m) (stem/ha) (t/ha) (m) (stem/ha) (t/ha) (stem/ha) (t/ha)
1 1956 22.33 1088 239.1 22.7 897 192.7 1229 232.1
6* 1961 25.72 530 187.7 24.88 528 175.3 ----- -----
12 1961 21.02 1146 206.2 19.97 963 131.1 1190 162
39 1987 6.84 1965 30.4 6.45 1162 13.6 3943 28.8

(1) Field measured (2) LiDAR (3) LiDAR + MNY

Fig.2 Scheme of 3-PG model by Sands (2004)

4. COUPLING ALGORITHM4. COUPLING ALGORITHM

Simulated stem biomass and population are 
compared to LiDAR and MNY method.

Tuning (Change parameters iteratively)
1: Site factor (Fertility Ratio: FR) (Fig. 5)
2: Species specific parameters (Thinning)

Update parameters

Estimation of stem biomass and population by 
LiDAR and the MNY method. (Section 3; Table. 2)

Simulation

FR: Soil fertility

Fig. 3 The scheme of
coupling algorithm

5. RESULTS5. RESULTS

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Tree height by LiDAR (m)

1:1

Si
m

ul
at

ed
 tr

ee
 h

ei
gh

t b
y 

3-
PG

 (m
)

Standard yield table
By Aomori prefecture (1997)

0

100

200

300

400

500

0 20 40 60 80 100
Stand Age

Yield curve
Simulation

Si
m

ul
at

ed
 st

em
 b

io
m

as
s

by
 3

-P
G

 (t
/h

a)

Fig. 1 Study area

Fig. 4 Fig. 5

Tree height
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Simulated 
tree heightFig. 6 vs.

The estimation of 
stem biomass for 100 years
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Table. 1 The Specification
of LiDAR Obs.

Simulated stem biomass and 
population correspond to 
LiDAR and MNY method ? 
(Fig. 4)

No

(Re-) Run
The 3-PG model

(Section 2; Fig. 2)
The model simulates
for 100 yrs. (Fig. 7)

Yes

Parameters are tuned in each plot appropriately.     The FR values constrain the converting factor.

Compared to yield table, the model estimates time 
series stem biomass appropriately.

Fig. 7

The model reconstructs each forest stand.
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